Valor máximo y valor mínimo de una función
Si
f es una función dada, entonces

es un
valor máximo relativo de
f, si existe un intervalo abierto
![$]a,b[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tfRvs0iNwRF4M_1ck2vnnTKk7RBfyQR1a4HtTjpRt71cUT_n2ns98_xxr7wdbbAexhysXUZdaADhy5U7cmdGCzyElGdaFmvC34IFpty8cSXn5SDr3wlzi1xgMLwvFEaOrWC3A1YABeMiv4elBZo8UTg3jrRN1OJ-DsCuoJgrZpEQfVBjywOb0YQvIgVLrEYR9zuuS5rb_v-N7VW2Gtx84zjDeYYXsHPA=s0-d)
tal que

y

para
![$x \in
]a,b[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sbTWe0-k0DDPeXNK3-MvUR8ucHfZzT-L3XN4uVEzO6Xcdlt21GEzdQX5oFANcAU1n0a8FByFGiAKsMAFOXYulwSOv8iGH_0q7_Q1K0UQ8Jm4P2wmi7r2aBk0canJyrG6bqATgMxWok1jYi7hY_sCXE6SbaoMaA6kOeJ_N-4Z_aWL3ATba5ckT4dIac5j6Q0ItGi1PAHxJVnFUyLFrBILXAIKX8AbLFRA=s0-d)
, siendo
x un valor del dominio de la función.
Si

para toda
x en el dominio de
f, entonces

es
el valor máximo de
fo
máximo absoluto.
Similarmente,

es un
valor mínimo relativo de la función
f, si existe un intervalo abierto
![$]a,b[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tfRvs0iNwRF4M_1ck2vnnTKk7RBfyQR1a4HtTjpRt71cUT_n2ns98_xxr7wdbbAexhysXUZdaADhy5U7cmdGCzyElGdaFmvC34IFpty8cSXn5SDr3wlzi1xgMLwvFEaOrWC3A1YABeMiv4elBZo8UTg3jrRN1OJ-DsCuoJgrZpEQfVBjywOb0YQvIgVLrEYR9zuuS5rb_v-N7VW2Gtx84zjDeYYXsHPA=s0-d)
tal que

y

para
![$x \in
]a,b[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sbTWe0-k0DDPeXNK3-MvUR8ucHfZzT-L3XN4uVEzO6Xcdlt21GEzdQX5oFANcAU1n0a8FByFGiAKsMAFOXYulwSOv8iGH_0q7_Q1K0UQ8Jm4P2wmi7r2aBk0canJyrG6bqATgMxWok1jYi7hY_sCXE6SbaoMaA6kOeJ_N-4Z_aWL3ATba5ckT4dIac5j6Q0ItGi1PAHxJVnFUyLFrBILXAIKX8AbLFRA=s0-d)
, con
x en el dominio de
f.
Si

para toda
x en el dominio de
f, entonces se dice que

es el valor mínimo de dicha función. También se llama mínimo absoluto.
Ejemplo:
Considere una función
f definida en un intervalo
![$]c,d[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s3_XZT6GIrFsFNZuN11h8bDDnRhHmmD6cJjzpAruleY1diJkIW2WlWrm8SFdEUuNKZQ2aY8PYDv26ugci5y9eiTBCzgXAOg2dvMMBchWI9EWim5QYbyVgyqJCZGxSgQReyH4dgfAClgFFMRlsn98iOGqcgaOlFtwlPoi1Qrp-LiuspXDD97JBxN3dlXMRCEKWmww0zV03_LZYjT3tz1C_mCrLckXCihg=s0-d)
, cuya representación gráfica es la siguiente:
Note que

, es un máximo relativo y

es el máximo valor que toma la función en el intervalo en que está definida.
Similarmente,

es un valor mínimo relativo y

es el mínimo absoluto de la función en
![$]c,d[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s3_XZT6GIrFsFNZuN11h8bDDnRhHmmD6cJjzpAruleY1diJkIW2WlWrm8SFdEUuNKZQ2aY8PYDv26ugci5y9eiTBCzgXAOg2dvMMBchWI9EWim5QYbyVgyqJCZGxSgQReyH4dgfAClgFFMRlsn98iOGqcgaOlFtwlPoi1Qrp-LiuspXDD97JBxN3dlXMRCEKWmww0zV03_LZYjT3tz1C_mCrLckXCihg=s0-d)
.
| | Teorema 2 |
| | Sea c un punto interior del dominio de una función f.
Si es un valor máximo relativo de f y si existe entonces .
Prueba: al final del capítulo. |
Ejemplo:
Considere la función f definida por
|  |
Su representación gráfica es la siguiente:
Puede observarse que cuando
x toma el valor de

entonces la función tiene un valor máximo. En este caso

es precisamente el vértice de la parábola con ecuación:

.
Según el teorema anterior debe cumplirse que

es igual a cero.
En efecto, como

, al sustituir
x por -2 se obtiene que

, que era lo que quería comprobarse.
| | Teorema 3 |
| Sea c un punto interior del dominio de una función f. Si es un valor mínimo relativo de f y si existe, entonces .
La demostración es similar a la del teorema anterior. |
Ejemplo:
| Considere la función f definida por: |  |
Su representación gráfica es la siguiente:
Note que la función
f tiene un
valor mínimo en

dado por

. El punto

es el vértice de la parábola con ecuación

.
De acuerdo con el teorema

debe cumplirse que

sea igual a cero.
Como

entonces

y se verifica lo enunciado respecto al valor mínimo.
Observación:
El recíproco de los dos teoremas anteriores no es cierto. Es decir, e
l hecho de que
sea igual a cero, no implica que en
exista un máximo o un mínimo.
Por ejemplo, para la función
f con ecuación

, se tiene que

, y

si

; sin embargo, en

no hay ni un valor máximo ni un valor mínimo, como puede observarse en la siguiente representación gráfica de la función.
| | Definición |
| | Sea f una función. Recibe el nombre de valores críticos del dominio de f, aquellos en los que es igual a cero o en los que no existe. |
Ejemplo:
Determinemos los valores críticos de las funciones con ecuaciones:
-
-
-
Solución:
- a.
- Como
, entonces 
Ahora:
si y solo si
o sea si
, ó,
, ó, 
Luego, los valores críticos de f son: x=0, x=1, y x=-1.
- b.
- Como
entonces 
Luego
, de donde
si y solo si
, o sea, si 
Por lo tanto el valor crítico de f es
.
Note que aunque
se indefine en
, como este valor no pertenece al dominio de f, entonces no es valor crítico de dicha función.
Observación:
Reciben el nombre de
valores extremos de una función
f los valores máximos relativos y los valores mínimos relativos de
f. Dada una función
f cuyo dominio es el intervalo
k, un valor

será un
valor crítico de
x para la función
f si:
| a. | ó |
| b. | no existe ó |
- c.
| c es un extremo del intervalo k. |
En este último caso, si
![$k=[a,b]$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s_4pGUwoygnvAdpDt1NDxcqf4WQ_tsVHHYUznSeAArgimQLNfDkxxs5qAf9E3oA471xjeq9qDCvPIvdGWdABAWNA5QNJ7vXvTIZKuzJA48d-YnhX_ABjmcqhBOg8EzIhpjH3UcbJ-nSp7-_FajIx8Zm9O6ezuW0ZFyLfg2fsd4HHC4Vmifoe76efeB9p3OYoXe8yqlUrM2zBfO4assNadh6SHaQ7RM8w=s0-d)
entonces "
a" y "
b" son valores críticos. Si

o si

entonces "
a" es un valor crítico. Si
![$k=]a,b[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t8DKtlzf8ybtpS5-BAB2n6afbiXc8DTMgSFpTPVS8fYaCYkqCONyHOM80zy5kq6NGMleo68qXEkW1GkdS6RQzb-FMsymEAzq3ORzOQOdk4wEwWRAewOCpTHgl4QU10A38yrsn0oj7NMPkuOsPQt4UzEV7spWeqLWYQoDWzgxMGltHovuffluiT8WjjgLY7-2d3CeTfbGCiXFuwI6oaYZDXxenIU71dFw=s0-d)
, o si
![$k=]-\infty,b]$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uselPBMvc3OB3oW2_Ydjwf0aS7j_kBdN3tX5PPJ95Y49xu0WXT_khtt1LuCokgrPLtvo9q9s-8xe5FIQ4730u8riJ9wRtVY-zb_6KCOYbgkTEBf_xbCcsb4bHfvv-70IiHoEP3rXk9JFnVXRo8r68LD8kWk79--UdgzQby-glp4hqvo35Qd7O22Tyn9kzhpSikeot5u5a6dgljU73JEsicjGZKM_n2lA=s0-d)
entonces "
b" es un valor crítico. Si
![$k=]a,b[$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t8DKtlzf8ybtpS5-BAB2n6afbiXc8DTMgSFpTPVS8fYaCYkqCONyHOM80zy5kq6NGMleo68qXEkW1GkdS6RQzb-FMsymEAzq3ORzOQOdk4wEwWRAewOCpTHgl4QU10A38yrsn0oj7NMPkuOsPQt4UzEV7spWeqLWYQoDWzgxMGltHovuffluiT8WjjgLY7-2d3CeTfbGCiXFuwI6oaYZDXxenIU71dFw=s0-d)
, entonces ni "
a" ni "
b" son valores críticos (note que los valores extremos de un intervalo abierto no son elementos del intervalo).