LIMITES INDETERMINADOS
La indeterminación 00/00
Se analizará el límite del cociente de dos funciones polinomiales en el que la variable crece o decrece indefinidamente. Se debe tener en cuenta que el límite de una función polinomial de grado n ³ 1 cuando x tiende a +¥ ó a -¥ es +¥ ó -¥ . Para resolver límites de este tipo, se dividen el numerador y el denominador de la función dada por xn, siendo n el mayor de los grados de las funciones polinomiales. Luego se aplican las propiedades de los límites.
Ejemplo. Halle
La función dada consiste en el cociente de dos funciones polinomiales: una de grado 4 y otra de grado 3. Por lo tanto, se dividen el numerador y el denominador por x4 y resulta:
Ejemplo. Halle
La función dada consiste en el cociente de dos funciones polinomiales: una de grado 4 y otra de grado 3. Por lo tanto, se dividen el numerador y el denominador por x4 y resulta:
En el ejemplo dado, el grado de la función polinomial del numerador es mayor que el de la del denominador y se obtuvo en este caso. 00.
Ejemplo. Determine
Se dividen el numerador y denominador por x3:
Puede observarse que el ejemplo se refiere al cálculo del límite del cociente de dos funciones polinomiales del mismo grado y se obtuvo como resultado el cociente de los coeficientes de los términos de mayor grado de ambas.
Ejemplo. Calcule .
En este ejemplo, el grado de la función polinomiales del numerador es menor que el de la del denominador y se obtuvo como resultado cero.
Nota. Al calcular P(x) /Q(x) , donde p(x) y q(x) son dos funciones polinomiales, se obtiene:
a) el cociente de los coeficientes de los términos de mayor grado de la función polinomial del numerador y la del denominador, si ambas tiene el mismo grado.
b) +00 ó –00 si el grado de la función polinomial del numerador es mayor que el de la del denominador.
c) 0 si el grado de la función polinomial del numerador es menor que el de la del denominador.
EJERCICIOS
Calcule los siguientes límites:
La indeterminación 00--00
Los procedimientos algebraicos para salvar una indeterminación de este tipo, se desarrollan en los siguientes ejemplos:Ejemplo. Determine el valor de
Al reemplazar la variable por 2 resulta ¥ -¥ , que es una indeterminación.
Resolviendo la diferencia se obtiene:
Cuando x se aproxima a 2 por derecha, el numerador tiende a –3 y el denominador a 0 por valores mayores que él. Por lo tanto, la expresión resulta negativa y el límite es -¥.
= 00
Muy buenos días apreciados estudiantes ,les publicare algunos link que les ayudaría a comprender mas el contenido publicado.
No hay comentarios:
Publicar un comentario